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Abstract. Six years after the introduction of selfish mining, its coun-
terintuitive findings continue to create confusion. In this paper, we com-
prehensively address one particular source of misunderstandings, related
to difficulty adjustments. We first present a novel, modified selfish min-
ing strategy, called intermittent selfish mining, that, perplexingly, is more
profitable than honest mining even when the attacker performs no selfish
mining after a difficulty adjustment. Simulations show that even in the
most conservative scenario (γ = 0), an intermittent selfish miner above
37% hash power earns more coins per time unit than their fair share. We
then broadly examine the profitability of selfish mining under several
difficulty adjustment algorithms (DAAs) used in popular cryptocurren-
cies. We present a taxonomy of popular difficulty adjustment algorithms,
quantify the effects of algorithmic choices on hash fluctuations, and show
how resistant different DAA families are to selfish mining.

1 Introduction

Twelve years ago, the Bitcoin (BTC) white paper [26] introduced a novel consen-
sus protocol that kicked off an era of permissionless blockchains. In describing
this protocol, Nakamoto asserted that the system was secure as long as a ma-
jority of miners were honest [25]. To encourage honest participation, Bitcoin
offers financial incentives in the form of newly minted bitcoins as well as trans-
action fees. These incentives, Nakamoto argued, would be more profitable than
defying the protocol. Tantamount to an incentive compatibility claim for the
protocol, these assertions were adopted widely and became folk theorems, and
even garnered justification from formal modeling [18].

Nonetheless, these assertions were proven false. In a counterintuitive result,
Eyal and Sirer showed that there existed an alternative strategy, known as selfish
mining, whose financial incentive surpassed that of mining honestly [11]. Selfish
mining involves withholding mined blocks and releasing them only after honest
miners have wasted resources mining alternative blocks. Until a difficulty adjust-
ment, wasting competitors’ blocks confers no benefit to the selfish miner (SM).
Following a difficulty adjustment, however, the selfish miner can collect much
more than its fair share of block rewards, depending on its percentage of total
network hash power (α) and what proportion of honest miners mine on a SM’s
block during a fork in the network (γ). Counterintuitively, the selfish mining
strategy returns excess profits for any miner or pool with more than 1/3rd of the
global hash power (α > 33%), even with the assumption that no honest miner
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mines on a selfish block in a fork (γ = 0). As α → 50%, a selfish miner collects
close to 100% of rewards in the network, a doubling of its honest income.

Ever since its introduction, the selfish mining paper has attracted a cult of
denialism [8,16,35]. Leaving aside claims that stem from an inaccurate model of
how the Bitcoin protocol and pooling work [12], the resulting arguments revolve
around the issues of difficulty adjustments.

First, critics have asserted that selfish mining is unprofitable because time
spent forking blocks only serves to reduce the speed at which the main chain
grows. Hence, the argument goes, an increase in relative revenue is meaning-
less because profit per time-unit decreases. Second, critics have claimed that
selfish mining must necessarily involve long-duration attacks that persist past a
difficulty adjustment in order to be profitable.

In this paper, we show both of these claims to be false. We illustrate a surpris-
ing selfish mining variant where the attacker ceases to act selfishly immediately
after a difficulty adjustment, yet, paradoxically, still earns more than an honest
miner. We call this strategy intermittent selfish mining. We then investigate the
profitability of selfish mining under different difficulty adjustment algorithms.
In particular, we quantify the benefits of selfish mining on Bitcoin Cash, Bitcoin
SV, Ethereum, and Monero, and show the conditions under which profit per
time-unit exceeds honest mining.

Overall, this paper introduces intermittent selfish mining (§3) and quantifies
its benefits when applied to the Bitcoin protocol (§3.2). This protocol is, even
more counterintuitively than the original selfish mining strategy, profitable even
without performing any attack past the difficulty adjustment. Second, this work
provides a taxonomy of difficulty adjustment algorithms (DAAs) (§4.1). Finally,
it examines selfish mining profitability under the DAAs of Bitcoin Cash, Bitcoin
SV, Ethereum, and Monero (§4.3). Overall, the paper provides a more complete
picture of selfish mining’s implications, and can inform the design of future
proof-of-work (PoW) systems.

2 Background

This work describes an adversary employing selfish mining in proof-of-work cryp-
tocurrencies. In this section, we first describe the PoW mining process and then
outline the selfish mining algorithm.

2.1 Mining in PoW Cryptocurrencies

At their core, cryptocurrencies allow clients to publish transactions which are
collated and placed into blocks by miners. In PoW cryptocurrencies, these blocks
are mined by hashing the block data with a nonce until the resulting hash value
is below a target value. The target value is determined by a coin’s difficulty
adjustment algorithm (DAA). Difficulty describes how difficult it is to generate
a hash below this target value. Once a miner obtains a valid hash, it broadcasts
the block to receive newly minted coins and collect transaction fees. Once a block
resides on the longest chain, it is considered accepted. Orphans are blocks that
do not reside on the longest chain. Accepted blocks must then be buried under
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a sufficiently long suffix of the blockchain for their transactions to be considered
finalized.

2.2 Selfish Mining Strategy

In selfish mining, the selfish miner with a hash rate of α withholds newly-mined
blocks instead of immediately publishing them. As a result, honest miners are
unaware of these blocks and, unknowingly, are coerced into wasting hash power
mining blocks that are likely to be replaced in the chain. In this way, a selfish
miner probabilistically earns more block rewards than honest miners.

There are three scenarios in which a selfish miner publishes a block.
First, if the SM has a private chain of length two and the next block is found

by an honest miner, the new chain height difference is one. At this point, the
SM publishes its entire private chain to ensure a fork win.

Second, if the SM has a private chain of length greater than two and the next
block is found by an honest miner, the SM publishes only one block, the oldest
block in its private chain, while keeping the rest of its private chain hidden.

Third, if the SM has found a single block and the next block is found by
the honest miner, the SM will publish its block immediately. At this point, the
network is in a forked state. The SM will try to mine on its own block, while
the honest miners choose whether to mine on the honest or selfish block. The
proportion of honest miners that mine on the selfish block is referred to as γ.
Zero represents the most pessimistic γ value; it cannot be negative.

3 Intermittent Selfish Mining
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Fig. 1: Intermittent selfish mining timeline.
Black indicates ISM-mined blocks. An ISM en-
gages in selfish mining pre-difficulty adjustment,
sometimes losing blocks (e.g. block B), but
causes difficulty to drop by excluding blocks (e.g.
I and J). The ISM mines honestly post-difficulty
adjustment and collects more rewards per unit
time than it would normally.

We now introduce the inter-
mittent selfish mining strat-
egy. Intermittent selfish min-
ing is a modification of selfish
mining in which a miner alter-
nates between selfish and hon-
est mining at every difficulty
adjustment in Bitcoin. The
Bitcoin DAA targets a block
time of ten minutes and ad-
justs after every 2016 blocks
on the main chain. We assume
the worst-case scenario for the
attacker and omit transaction
fees and mining costs from
our analysis.

Intermittent selfish min-
ing is comprised of two
phases. In phase one, an intermittent selfish miner (ISM) employs selfish mining.
The goal of phase one is to knock out the honest miners’ blocks and set up the
attacker to profit in the epoch directly following the attack. As pointed out by
critics of selfish mining, although this results in an increase in the number of
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blocks won relative to the honest miner, this by itself does not lead to increased
profit for the selfish miner, not taking into account transaction fees. Phase one
merely extends the time it takes to reach 2016 blocks on the main chain; it does
not increase the number of blocks per minute produced by the selfish miner. In
fact, the profit of the attacker slightly decreases in this phase because at every
fork of equal height, the selfish miner risks losing its forked block if the honest
miners are able to mine on the honest block before the selfish miner can extend
its chain, when γ < 1. Nonetheless, it will force the network to lower the mining
difficulty to make up for slower block times and what it perceives as a lower hash
rate.

In phase two, following the difficulty adjustment, the ISM switches to honest
mining. With the new lower difficulty, honest mining results in a faster mining
rate than normal for all miners. Though this increased rate of minting profits all
miners equally in phase two, over the two phases, the ISM profits more relative to
the honest miner and per time unit. Surprisingly, this is sufficient for the attacker
to gain an advantage over honest miners. This lays to rest the claim that a selfish
mining attack must be launched and remain active past a difficulty adjustment.
Even though no selfish mining activity takes place after a difficulty adjustment,
the attacker still gains an economic advantage. Further, this change in strategy
also lowers the likelihood that the honest community will detect selfish mining.
An ISM could repeat this strategy over multiple periods and profit more than
honest mining in each iteration.

Figure 1 shows an example of intermittent selfish mining over the length of
a single iteration. The example involves an ISM with about 30% hash power.
In the diagram, blocks are mined in alphabetical order. White blocks represent
non-ISM, honest blocks and black blocks are ISM-mined blocks. Selfish mining
is employed only in phase one. The ISM mines block B, withholds it, and then
is forced to publish it to compete with honest block C. The honest miners mine
block D faster than any block is mined on B and therefore B is orphaned. Later,
the ISM succeeds in knocking out blocks I and J by withholding its private chain
of blocks F, G, and H until the latest possible moment to guarantee a win. Once
the difficulty adjustment is reached, selfish mining results in a lower difficulty
to compensate for the slower build of the public chain. After this adjustment,
in phase two, the ISM mines honestly. Although it wins blocks at its expected
rate, the lower difficulty results in more blocks per time unit.

Intermittent selfish mining dispels a misconception about the profitability
of selfish mining. Selfish mining is often argued to be impractical because the
attack, it is erroneously claimed, must be maintained for several difficulty periods
in order for the attacker to earn a profit. The crux of the argument is that because
the selfish miner earns less revenue per unit time during the first difficulty period
due to its elevated orphan rate, it must maintain the attack for several additional
difficulty periods to compensate. Grunspan & Perez-Marco [16] formalized such
a time-based revenue model for selfish mining and calculated that an attacker
with 10% of the network hash rate and with a γ parameter of 0.9 must maintain
the attack for ∼10 weeks. Their calculation is incorrect because they fail to
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account for the profit earned by the attacker in the difficulty period following
the attack. Their revenue calculation stops one difficulty period too early, when
selfish mining ends. Initiating the attack results in less revenue per unit time
during the first difficulty period, but this should be considered a loan rather
than a loss: the attacker gets paid back at the conclusion of the attack.

It is easy to show that the selfish miner in the previous example (α = 10%,
γ = 0.9) will earn a profit even if conducting the attack for only a single, 2016-
block difficulty period and then switching to honest mining, exactly as would
an intermittent selfish miner, using the state probabilities and state transitions
from [11]. The presence of an ISM in phase one drives up the orphan rate for
the honest miners to 8.61% and its own to 6.74%. We can use the equation

2016 = (n ∗ (1− i) ∗ α) + (n ∗ (1− h) ∗ (1− α))

to calculate expected, non-orphaned block wins, where i and h are the ISM and
honest orphan rate, respectively, and n is the number of blocks that need to be
found to complete a difficulty period. In expectation, the ISM will have won 205
blocks, which is 3 blocks more than if employing honest mining, and the honest
miners will have won 1811 blocks. The expected time until the difficulty adjust-
ment stretches from 14 days to 15.29 days. Although the ISM earns more than
its fair share of block rewards, its revenue per day falls from 14.40 blocks/day
to 13.43 blocks/day during phase one. The following difficulty period makes up
for this temporary dip.

To compensate for the fact that the last set of 2016 blocks took 15.29 days
to find rather than 14 days, the Bitcoin network adjusts the difficulty parameter
downwards, making the next 2016 blocks come faster. At this point, the intermit-
tent selfish miner returns to mining honestly in phase two, thereby reducing the
network orphan rate back to normal. Because of the lower difficulty, the next
2016 blocks take 12.82 days in expectation. Although the intermittent selfish
miner, now mining honestly, earns only 202 blocks in expectation, its expected
revenue per day increases to 15.72 blocks/day during phase two.

During these two phases, the equivalent of two difficulty periods, the inter-
mittent selfish miner wins in expectation 205 + 202 = 407 blocks over the course
of 15.29+12.82 = 28.11 days, for an average revenue rate of 14.47 blocks per day.
Since its expected revenue per unit time is greater than if it were mining hon-
estly (14.40 blocks per day), intermittent selfish mining is profitable for attack
durations significantly shorter than the 70 days computed in [16].

3.1 Intermittent Selfish Mining Evaluation

We examine the intermittent selfish mining strategy using a Monte Carlo simula-
tion to generate a chain of 8064 blocks excluding orphaned blocks, the equivalent
of two intermittent selfish iterations. At each simulated second, each miner has
a random chance of finding a block, set to the miner’s hash rate divided by the
difficulty of its most recent block.

We design our experiments to answer the following questions. (1) How does
intermittent selfish mining affect difficulty? (2) What is the ISM’s block-win rate
(blocks/minute) and how does it fluctuate in each phase of intermittent selfish
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Fig. 2: An ISM causes the difficulty to
lower after selfish phases and rise after
honest phases (γ = 0).
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Fig. 3: ISM block-win rate.

mining? (3) Does the overall chain-growth rate (i.e. number of blocks added to
the longest chain per minute) change in the presence of an ISM?

To answer these questions, we analyze difficulty, block-win rate, and chain-
growth rate as each block is generated in a given run under various α and γ
levels. We simulate each combination of parameters 100 times and then calculate
averages and standard deviations for the data points.

3.2 Results

First, Figure 2 shows how an ISM with γ = 0 affects difficulty throughout two
periods. We only show data for α = 10%, 33%, and 49%, which in the original
selfish mining paper were minority rates that incurred losses, broke-even, and
profited, respectively. As α increases, the number of blocks necessary to reach the
end of the two iterations increases. Additionally, the effects of an ISM are more
apparent when α = 49%. Selfish mining in phase one requires almost double the
normal 2016 blocks to reach a difficulty adjustment. Once the difficulty lowers,
honest mining in phase-two occurs for about 2016 blocks, then the period ends.

Next, Figure 3 shows the intermittent selfish miner’s block-win rate for three
γ levels: 0, 0.5, and 1. In comparison with the original selfish mining strategy, the
potential rewards of intermittent selfish mining are more modest. Nonetheless,
expected profits for an ISM surpass the profits of honest mining above certain
hash rates depending on the γ value. Even in the most conservative estimation,
when γ = 0, the ISM profits if its hash rate is above 37%. The block-win rates
at each γ level converge at around 0.06 as α reaches 50%, which surpasses its
expected 0.05 block-win rate.

The corresponding cumulative block-win rate (blocks/minute) by the ISM is
shown in Figure 4. Due to the way the ISM alternates strategies, the win rate
fluctuates between phases. In phase one, which includes timesteps 0 to about
4000 for α = 49%, selfish mining has a win rate of about 0.047, which is lower
than the expected 0.049 win rate. In phase two, the win rate increases to about
0.057 at its peak, before the next phase shift. Of course, the difficulty adjustment
rising back to a higher level combined with resuming selfish mining brings the
cumulative block-win rate to 0.053. The win rate will continue to fluctuate, but



Selfish Mining Re-Examined 7

it will converge to about 0.0568. Figure 4 shows that a miner only has to engage
in intermittent selfish mining for a little over one difficulty period to immediately
win more blocks per minute than it would under honest mining.
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Fig. 4: ISM block-win rate after some
number of timesteps (γ = 0).
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ence of an ISM. The three γ curves are
superimposed since γ values do not af-
fect growth rate.

Finally, Figure 5 shows the chain-growth rate in the presence of an ISM. In
BTC, the expected chain-growth rate is 0.1 blocks/minute. Initially, one might
predict that intermittent selfish mining causes deflation by using difficulty to
increase the chain-growth rate and, therefore, the supply of bitcoins. Yet, this
figure shows that increasing an ISM’s α rate lowers the chain-growth rate. Inter-
mittent selfish mining, surprisingly, slows the coin mint rate. Each slow phase-one
outweighs the rapid phase-two, which, as an unintended side-effect, leads to a
lower chain-growth rate overall, despite increasing profits for the ISM.

4 Difficulty Adjustment Algorithms

We now focus our analysis on difficulty adjustment algorithms (DAAs). Given
that there now exist various PoW coins with diverse protocols, an analysis of
several current DAAs and their impact on selfish mining was necessary.

The main goal of a difficulty adjustment algorithm is to set a difficulty that
causes blocks to be mined at regular target time intervals. A responsive DAA
allows a cryptocurrency to quickly adjust difficulty to prevent blocks from being
mined at levels too high or low compared to the target rate. On the other hand,
being too responsive would allow difficulty levels to be easily manipulated by
large miners entering and exiting whenever it benefits them.

In this section we classify various DAAs and evaluate their responsiveness to
increases in hash power, both from an honest miner and a selfish miner.

4.1 DAA Taxonomy

Existing approaches to DAA can be classified into three categories:
Period-based. Period-based DAAs are algorithms in which difficulty is ad-

justed only at the end of a typically fixed period. A period is defined as the
amount of time it takes to generate w blocks on the main chain. The period
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width, w, can be chosen to be large enough to minimize extreme difficulty fluc-
tuations, but must be small enough to adjust to major hash rate changes.

Figure 6a shows a period-based DAA with w = 3. After block F is mined,
the period ends and the difficulty is recalculated based on the block times of
blocks D - F. The difficulty is then set for the next period of blocks G - I.

Our evaluation of DAAs uses Bitcoin as the period-based cryptocurrency.
The Bitcoin DAA targets an average mining time of ten minutes per block [6].
After 2016 blocks are mined on the main chain, which takes roughly two weeks,
the difficulty is adjusted to get closer to the target block time.

A B C

F

F G H

w

Difficulty
adjustment

ID E

(a) Period-based

A B C D E F G

(b) Incrementally-extrapolated

A B C D E
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(c) Sliding-window

Fig. 6: DAA Taxonomy. Blue blocks are
used in the difficulty calculation. Red
blocks are mined using the new diffi-
culty.

Incrementally-extrapolated. The
incrementally-extrapolated DAA is
one in which difficulty is incre-
mented/decremented depending on
how far outside of the block tim-
ing bounds a new block is. In con-
trast to Bitcoin, where a proportion
can be used to calculate a new diffi-
culty, incrementally-extrapolated dif-
ficulties increase/decrease the current
difficulty by a fractional amount. This
DAA limits the responsiveness of the
cryptocurrency to hash rate changes.

Figure 6b shows an example of an
incrementally-extrapolated DAA. To
mine block G, the DAA only looks
at the elapsed time since the parent
block F was generated and then adds
or subtracts from the parent difficulty
depending on how close the elapsed
time was to the target block time.

Ethereum (ETH), as of Byzan-
tium, uses an incrementally-extrapolated
DAA that adjusts at every new block [9]. Each new block difficulty is calculated
by measuring the time difference between the current timestamp and that of its
parent, then incrementing or decrementing the parent difficulty depending on
whether the time difference is outside of the desired bounds of 9–17 seconds. As
will be shown in the results, a sudden doubling of the hash rate in the network
will cause a slow difficulty change compared to a DAA which uses proportion
calculations and can adjust difficulty completely within one block.

Sliding-window. The sliding-window DAA is similar to period-based except
its difficulty recalculation occurs at every new block. To calculate the current
difficulty, a block-window of width w consisting of ancestor blocks is used. A
new difficulty is calculated based on the amount of time it took to generate the
blocks in the block-window compared to the expected time.
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Figure 6c shows a sliding-window DAA with w = 5. To mine block G, the
DAA slides its window over blocks B - F and recalculates the difficulty based
on how long it took to generate the blocks within the window compared to a
target value. Once G is mined, it will be included in the next window.

Cryptocurrencies that use sliding-window DAAs are Bitcoin Cash (BCH),
Bitcoin SV (BSV), and Monero (XMR). Given that BSV branched off BCH [1],
both share the same DAA and for this paper we refer to them collectively as
BCH/BSV. BCH/BSV targets ten minutes per block [3], while Monero tar-
gets two minutes per block [23]. The sliding window widths are ∼144 and 600
blocks for BCH/BSV and XMR, respectively. To avoid timestamp-based attacks,
BCH/BSV chooses the median of the three most recent blocks and the median
of the blocks 144–146 behind the current block based on timestamp to use as
the beginning and end of the window, respectively [4]. XMR, on the other hand,
orders the last 745 blocks, excludes the most recent 15, then omits the outer 120
blocks (i.e. 60 recent and 60 oldest) leaving 600 blocks in its window [24].
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Fig. 7: Difficulty once a new honest miner enters the system (γ = 0).

4.2 DAA Evaluation

To evaluate these difficulty adjustment algorithms, we examine attacks launched
by renting extraneous hash power and ask the following questions. (1) How
effective are DAAs at adjusting difficulty if a substantial amount of hash power
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is introduced to the network? (2) How much can a new miner profit in terms of
block-win rate upon entering a new cryptocurrency?

First, we analyze how the various DAAs of Bitcoin, ETH, BCH/BSV, and
Monero alter difficulty once a new honest miner enters the system. We also
evaluate the block-win rate of the new miner while it takes advantage of the old
difficulty. Second, we compare the profitability of a new selfish miner under the
different DAA schemes. As before, each experiment simulates the generation of
8064 blocks on each blockchain, not including orphans.

Thus, our simulations start with a network of a given hash power, and then
add additional mining power belonging to the adversary. For instance, to intro-
duce a miner with a 30% hash rate, we give the miner enough hash power, S,
such that S/(S +H) = 0.3, where H is the initial hash power in the network.

We disregard timestamp manipulation attacks by miners because they are an
orthogonal concern and their full treatment is beyond the scope of this paper.
So, when choosing median BCH/BSV outer blocks, the middle block is always
the outer block since the three blocks are guaranteed to be in timestamp or-
der. Recent data from these systems indicate that the timestamp in new blocks
matches global time to within seconds.

Our simulations also take into account the difficulty clamps of Bitcoin and
BCH/BSV. If the blocks used in a difficulty adjustment were mined too slowly or
too quickly, the difficulty adjusts only to the limits set by the difficulty clamps.
Bitcoin has a difficulty clamp of 4× or 0.25× the target time, while BCH/BSV
has a clamp of 2× and 0.5×. As Section 4.3 will show, selfish miners under 50%
hash power will be unaffected by these clamps.

4.3 Results

We first examine how difficulty adjusts if a new honest miner enters the network,
shown in Figure 7. With the exception of ETH, period/window width is the most
significant determining factor in the adjustment period. This width is the amount
of blocks necessary to completely adjust difficulty and reach equilibrium when
hash power is added to the network. For this reason, BSV and BCH, with their
144 block-window, are the fastest to adjust. Monero takes longer at 675 blocks,
which come from the 600 block-window width and the 75 newest blocks that are
omitted from the sliding-window. Finally, Bitcoin takes longest of the three with
a period width of 2016. ETH differs in that there is no concept of width in its
DAA. Since it is incremental, difficulty takes about 10,000 blocks to stabilize.

We omit showing difficulty graphs when a new SM enters the network because
difficulty does not adjust much, if at all, for any of the schemes analyzed. A new
selfish miner spends time trying to create forks in the network instead of using
its hash power to help grow the longest chain. As such, DAAs will not adjust in
this scenario since the chain will grow at roughly the same rate as before despite
having extra hash power in the network.

Next, we analyze the cumulative block-win rate for a new honest miner in
Figure 8. The key takeaway is that upon entering a cryptocurrency, powerful
new miners can take advantage of an initial low difficulty to mine blocks faster
than normal. Noticeably, a new miner can leverage this initial period in Bitcoin
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Fig. 8: Cumulative block-win rate of an new honest miner after some number of
timesteps (γ = 0).
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Fig. 9: Cumulative block-win rate of a new selfish miner after some number of
timesteps (γ = 0).



12 Kevin Alarcón Negy, Peter Rizun, and Emin Gün Sirer

for about two weeks. The 49% miner wins 0.1 blocks per minute for the duration
of the period immediately upon entering. Once the difficulty adjusts, the win
rate gradually declines. ETH, BCH/BSV, and Monero, on the other hand, be-
gin adjusting difficulty and lowering the miner block-win rate almost instantly.
These graphs imply that there is a benefit to a miner alternating between cryp-
tocurrencies and profiting from low difficulties in each, only abandoning a coin
to allow its difficulty to revert back to profitable levels.

We now evaluate the same measure if the new miner in the system is a selfish
miner. Figure 9 shows corresponding block-win rates for a new selfish miner.
In the four coins, the new SM with α = 49% earns about double the amount
of blocks per minute than what it should with honest mining. These graphs
corroborate the fact that a new SM orphans enough blocks that the chain-
growth rate and, therefore, difficulty barely changes. Hence, with the DAAs
under analysis, DAA choice is irrelevant when it comes to selfish mining.
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Fig. 10: Block-win rate earned by a new selfish miner.

The next graphs in Figure 10 show the block-win rate at the end of the
simulation. As expected, higher γ leads to higher win rate. It also lowers the
threshold of hash power needed to break even. γ = 1 allows a new selfish miner
with any amount of hash power to enter any coin and at the very least make what
it was expected to make if it had employed honest mining. A more reasonable
low γ rate would require about 33% of the global hash rate to break even.
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Fig. 11: After a lengthy chain-race, the
honest miner chooses whether to build
on Hn−1 or Sn−1. In this scenario, the
honest chain will have a lower diffi-
culty than the selfish chain, since it took
longer to produce. Blocks Sn and Sn+1

are unpublished.

As shown in Figure 11, suppose
the SM takes an initial hidden lead
of 3 blocks (S1, S2, and S3). The hon-
est miner (HM) then spends time min-
ing on the original parent and creates
its own chain with block H1. The SM
publishes block S1 to compete with
H1. In γ = 0, the HM will try to mine
on its own H1 block while it thinks it
is a winnable chain. Assume the SM
mines a fourth block, S4, in its pri-
vate chain and then the HM mines on
its own block H2, and both alternate
some number of blocks. When mining
block Hn, the HM has a choice: in γ = 0, it chooses to mine on its own block,
Hn−1; in γ = 1, it chooses to mine on the selfish block, Sn−1. This choice has
a significant effect on difficulty. Since Sn−1 was mined long before Hn−1 was
mined, mining on Sn−1 should have a higher difficulty than mining on Hn−1.
Therefore, choosing to mine on the selfish block is the same as choosing to mine
on a more difficult chain.

If n is on the order of hundreds, as can happen when α is close to 50%, the
honest chain could have a significantly lower difficulty than the selfish chain.
Since the HM will inevitably lose, the decision of which chain to mine on deter-
mines how fast an HM can force the SM to release all private blocks. In γ = 0,
honest miners can catch up to the SM much faster by taking advantage of a lower
difficulty. When γ = 1, however, honest miners choose to mine on the harder
chain and will more slowly catch up to the selfish miner. In the long run, honest
miners choosing the more difficult chain means more honest blocks are orphaned
and the SM is able to extend its winning chain for longer than if γ = 0. Thus,
the selfish block-win rate and the proportion it earns in γ = 0 is significantly
less than in γ = 1 for high hash rates.

The gap seen in Figure 10c between γ = 0 and 1 will be more or less pro-
nounced depending on the length n the two chains reach before merging and
the DAA block width, w. In our experiments, we observed n to be on the order
of hundreds. If n < w, the difference in difficulties between the two chains will
be less significant as with Bitcoin, whose block width is 2016. For this reason,
the original selfish mining analysis did not exhibit a gap at higher α values.
BCH/BSV, on the other hand, has a block width of 144. When the value of n
is on the order of hundreds it significantly impacts the difficulty in BCH/BSV.
Finally, Monero exhibits a gap that is greater than Bitcoin but smaller than
BCH/BSV since its block width of about 675 falls in the middle of the other
two widths. Although ETH should have the widest gap, since it only looks at
the difficulty of the parent, it does not exhibit this gap due to its incremental
nature that causes difficulty to adjust gradually as seen in Figure 7b.
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Fig. 12: The proportion of profit earned by a new SM. Uncle rewards in ETH
practically nullifies any penalties an SM would pay from creating forks.

Finally, the graphs in Figure 12 show the proportion earned by the selfish
miner relative to the honest miner. For BTC, BCH/BSV, and XMR, the results
are similar to the results from the original selfish mining results, with the excep-
tion of the BSV γ gap, mentioned above. ETH, on the other hand, shows that
a new selfish miner with any hash rate and any γ value can at least break-even.
This finding is entirely due to the uncle block reward system that exists in ETH,
which is described in more detail in Appendix A.

5 Related Work

This work covers two areas of research: difficulty adjustment algorithms and
deviant mining behavior. We discuss related work below.

Difficulty Adjustment Algorithms Prior work in DAAs focuses on the
relationship between hash power and difficulty. Kraft [17] analyzed the Bitcoin
DAA in the presence of exponentially-increasing hash rate and found that it
resulted in lower average block times than desired. Noda et al. [28] compared
several DAAs and concluded that Bitcoin’s DAA could not stabilize block times
in the face of fluctuating hash power. Neither work considers how difficulty
adjusts in the presence of deviant mining behavior.

A few recent studies have looked into leveraging DAAs to increase profits.
Fiat et al. [13] examined equilibria when miners are allowed to throttle their hash
power to bring down the difficulty level. Smart mining [15] is similar to inter-
mittent selfish mining in that it also employs alternating strategies. It alternates
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between honest mining and remaining idle at every difficulty adjustment. Our
work differs from both studies in that our adversary exerts its full hash power
and it actively attempts to harm the profits of other miners by employing self-
ish mining. We leave quantitative comparisons between intermittent selfish and
smart mining as future work.

Deviant Mining Behavior Since its introduction, selfish mining researchers
have looked at various contexts and strategy modifications to see how its prof-
itability is affected [14, 27, 31, 32]. Sapirshtein et al. [31] and Nayak et al. [27]
showed that small modifications to selfish mining lead to higher profits depend-
ing on the α and γ rates. Göbel et. al. [14] analyzed selfish mining using a
propagation-delay model. These studies all assume a constant difficulty level.

The selfish mining strategy is one of several attacks that creates forks in
the blockchain. Liao and Katz [21] present a strategy where so-called whale
transactions with large fees are used to convince miners to fork the network.
Kwon et al. [19] introduce the fork-after-withholding attack where a mining
pool participant only tries to fork blocks from miners in competing pools.

Most previous work falls under the larger umbrella of mining attacks and
deviant strategies. For example, research has looked at unintended mining be-
havior once Bitcoin no longer confers block rewards [7, 34], strategies employed
by mining pool participants [10,20,22,30], and coin-hopping strategies [2,5,33].

6 Conclusion

This paper examined the controversy around selfish mining and evaluated its
application to a range of popular cryptocurrencies. Specifically, it introduced in-
termittent selfish mining and examined several difficulty adjustment algorithms
with selfish mining in action. With intermittent selfish mining, this paper showed
that selfish mining under the Bitcoin DAA can be profitable without extending
the attack past a difficulty adjustment. Separately, this work quantified the enve-
lope within which selfish mining is a feasible strategy against the various DAAs
present in BTC, ETH, BCH, BSV, and XMR.

Selfish mining is an instance of game-theoretic attacks that take advantage
of information asymmetry in distributed systems. Such attacks tend to be sub-
tle, unexpected, and at times, counterintuitive. We caution laypeople against
accepting folk theorems at face value.
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A Uncle blocks and selfish mining

An uncle block is an orphaned block whose parent resides on the main chain.
Uncle blocks in ETH can be referenced by later blocks on the main chain and are
rewarded according to the equation (8−h)∗b/8, where b is the block reward and
h is the height difference, up to 6, between the uncle block and the referencing
block. Additionally, the creator of the referencing block is rewarded with an
extra b/32 per uncle that is included, up to two uncles. Note that if a losing
fork is longer than one block long, only the first block in the losing chain will be
rewarded as an uncle. This system incentivizes miners to reference uncle blocks
to gain extra rewards, while disincentivizing small miners from joining mining
pools by rewarding, albeit minimally, these losing blocks.
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Fig. 13: In ETH, γ = 0 results in only
one honest uncle block, H1, whereas γ =
1 results in n possible uncles.

This reward structure has the un-
intended consequence of nullifying the
risks and penalties of selfish mining.
As has been noted before [29], uncle
block rewards allow selfish miners to
fork without suffering a massive loss if
the fork loses. As shown in Figure 12b,
uncle block rewards in ETH allow self-
ish miners to at minimum break even,
no matter what amount of hash power
they possess.

Interestingly, the graph shows un-
expected behavior when α is around
45%. Around this hash rate, a selfish
miner earns less relative to the honest
miner under γ = 1 than if γ = 0. Nor-
mally, γ = 1 allows an SM to win all
forks and earn more than if γ = 0 and
the SM has to compete to win a fork. Yet, here we find the reverse to be true.
This counter-intuitive finding stems directly from the uncle reward structure.

Figure 13 shows an example that provides the intuition behind this finding.
Suppose an SM has mined a private chain of length 3 (S1, S2, S3) on block o,
the origin block. By not publishing any block, the SM allows the honest miner
to waste resources mining on block o. If the honest miner is able to mine a block,
H1, then the SM releases S1 to create an artificial fork. Assume the SM then
mines a block, S4, to maintain a chain length difference of 3. Then the honest
and selfish miner begin alternating mining blocks. In γ = 0, the honest miner
chooses to mine on its own blocks. No matter how long the two chains become,
the honest miner will lose all its blocks, but H1 will be eligible to be rewarded
as an uncle block since its parent o is on the winning chain. However, when
γ = 1, once the artificial fork of S1 and H1 is created, the honest miner will
abandon H1 and mine on S1. As the two miners alternate finding blocks, the
honest miner will always abandon its own block and mine on the selfish block.
The key is that now all honest blocks from H1 to Hn can be included as uncle
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blocks. Since the selfish miner was ahead throughout the entire chain buildup,
most of the uncle blocks will be included by the selfish miner if following a
greedy inclusion strategy. Although both uncle creator and including miner are
mutually rewarded for the uncle block, the inclusion of each additional uncle
block gives a relatively higher reward to the creator than the including miner.
Thus, in the best case scenario for the selfish miner, where b is the block reward,
the honest miner would receive 2/8 * b and the selfish miner that has included
the uncle block receives 1/32 * b, if the height difference is 6. Normally, the
honest miner would be rewarded even more since the uncle block would likely be
included within a few block generations. In the example above, if H1 is included
in the block S4, which is the earliest that the selfish miner could know about H1,
the height difference between the uncle and the new block would be three and
the honest miner would then receive 5/8 * b. Ritz and Zugenmaier [29] discuss
other uncle inclusion strategies for the selfish miner.


